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ABSTRACT 
 

     In this paper, two different composite time schemes are presented, and their 
numerical performances for conservative nonlinear systems are investigated. In the 
composite schemes, collocation and weighting parameters included in the time 
approximations are optimally determined by using the total energy of simple conservative 
nonlinear dynamic problems. Due to the unconventional optimization process of 
algorithmic parameters, enhanced total energy conserving capabilities are achieved 
without additional computational procedures. Linear and nonlinear benchmark problems 
are numerically solved by using the composite schemes, and numerical results are 
investigated to verify the enhanced total energy conserving capability of the composite 
schemes. 

 
 
1. INTRODUCTION 
 
     Direct time integration schemes play critical roles in transient analyses of 
hyperbolic time-dependent problems. For this reason, numerous time integration 
methods have been developed based on various numerical techniques and theories to 
increase efficiencies and accuracies of transient analyses of complex engineering 
problems (Alamatian 2013, Kwon 2008, Rostami 2021). Recently, several implicit time 
schemes were developed based on the strategy of subdividing a complete time step into 
two sub-steps where different time schemes are employed. These schemes are often 
called the composite scheme (Baig 2005, Bathe 2005). 

We can categorize two-stage implicit schemes into two different types depending 
on their computational structures. Both types have two sub-steps, but only one type 
requires the computation of the initial acceleration vector. If the initial acceleration vector 
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is included in time approximations, it should be computed by using the equilibrium 
equation at 𝑡𝑡 = 0, which also accompanies the factorization of the mass matrix. Many 
two-stage implicit time schemes, such as the Bathe method (Bathe 2005) and the Kim 
and Reddy method (Kim 2017), fall into this category. Interestingly, it can easily be shown 
that some of the recently developed two-stage implicit schemes (Kim 2017, Noh 2019) 
in this category are mathematically identical although they are developed based on 
different theories and techniques (Kim 2020). 

In another type, on the other hand, the initial acceleration vector and the 
acceleration vector of the previous time step are not included in time approximations, 
and the computation of the initial acceleration vector at 𝑡𝑡 = 0 is not required either. 
Sometimes, this type is called the self-starting composite scheme (Li 2019) whose 
computational structures are basically the same as those of the diagonally implicit two-
stage Runge-Kutta method. Here, the meaning of ‘self-starting’ is that the scheme can 
be started by using pure mathematical initial conditions (i.e., the initial displacement and 
velocity vectors) without additional processes such as the computation of the initial 
acceleration vector or the integral of the external force vector. Advantages of this type 
have been explained in detail by Kim (2020). 

In linear analyses, the absence of the initial acceleration vector (and the 
acceleration vector of the previous time step) in composite schemes can increase the 
computational efficiency because the factorization of the mass matrix can completely be 
omitted. In this case, two-stage schemes without the initial acceleration vector can 
achieve improved efficiency in linear analyses if effective coefficient matrices of the first 
and second sub-step are constructed to be identical to each other. If these two conditions 
(the absence of the initial acceleration vector and an identical effective coefficient matrix) 
are fully satisfied, only one factorization is required in linear analyses, which can reduce 
the computation time and effort. In this paper, we present a novel composite time scheme 
that can achieve the aforementioned computational advantages and improved accuracy 
simultaneously through unconventional parameter optimizations. 

 
2. GENERAL FORMS WITHOUT INITIAL ACCELERATION VECTOR 
 

According to Newton’s second law of motion, various time dependent engineering 
problems are often described in the form of 
 

 (1) 
 
where 𝑡𝑡 is the time, 𝐌𝐌 is the mass matrix, 𝐟𝐟 is the force vector, 𝐮𝐮 is the displacement 
vector, and the single and double dots over the displacement vector denote the velocity 
and acceleration vectors, respectively. In linear structural dynamics, 𝐟𝐟 is given by 
 

 (2) 
 
Direct time integration schemes discretize Eq. (1) for the time interval 𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡, 
where 𝑡𝑡𝑠𝑠 is the starting point of the time interval, and ∆𝑡𝑡 is the size of the time interval. 
It is noted that ∆𝑡𝑡 is also called the time step. In the composite schemes without the 



The 2022 World Congress on
The 2022 Structures Congress (Structures22)
16-19, August, 2022, GECE, Seoul, Korea

initial acceleration vector, the equilibrium equation, velocity and displacement vectors of 
the first and second sub-steps are given, respectively, by 
 

 (3) 
 

 (4) 
 

 (5) 
 

 (6) 
 

 (7) 
 

 (8) 
 

 (9) 
 

 (10) 
 
where the subscript 𝑡𝑡𝑠𝑠 + 𝜏𝜏𝑖𝑖∆𝑡𝑡 denotes the time point where the variable belongs, 𝜏𝜏1 and 
𝜏𝜏2 are the collocation parameters that determine the location of the time point, and 𝛽𝛽11, 
𝛽𝛽21, 𝛽𝛽22, 𝛽𝛽31 and 𝛽𝛽32 are the weighting parameters.  
 
3. UNCONVENTIONAL OPTIMIZATION OF ALGORITHMIC PARAMETERS 
 

The algorithmic parameters in Eqs. (3)-(10) can be optimized differently for different 
purposes. Traditionally, the linear single degree of freedom (SDOF) problem and its exact 
solution were used to determine the algorithmic parameters. In traditional optimizations, 
the parameters of composite schemes are determined to achieve second-order accuracy, 
unconditional stability, and controllable numerical dissipation. As a result, most of the 
existing two-stage time implicit schemes have similar spectral characteristics. For 
example, the Kim and Reddy method (Kim 2017) and the Noh and Bathe method (Noh 
2019) are spectrally identical, although they are represented by using different 
mathematical expressions. Hence, numerical solutions obtained from these two implicit 
schemes are completely the same. For details, see Kim (2020).  

 
3.1 Enhance composite scheme with third-order energy conserving capability 
Unlike traditional techniques for parameter optimizations, different conditions may 

be employed for different purposes. For example, additional mathematical conditions can 
also be obtained from the total energy of conservative nonlinear problems. In this study, 
additional conditions are used to enhance the total-energy conserving capability and 
computational efficiency of the newly proposed two-stage implicit time scheme. 

For linear analyses, having an identical effective coefficient matrix in the first and 
second sub-steps of composite schemes can dramatically reduce overall computational 
time, because only one matrix factorization is required throughout the entire procedure. 
To have an identical effective coefficient matrix in the first and second sub-steps in linear 
analyses, we determine 𝜏𝜏1 as 
 

 
(11) 
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The use of Eq. (11) makes the effective coefficient matrices of the first and second sub-
steps exactly the same in linear analyses. Like the case of traditional parameter 
optimizations, 𝛽𝛽11, 𝛽𝛽22, 𝛽𝛽32, and 𝛽𝛽31 can also be determined to ensure second-order 
accuracy as follows:  
 

  (12) 
 

 
(13) 

 
At this point, 𝛽𝛽21 and 𝜏𝜏2 are undetermined parameters. Now, the total energy of 

conservative nonlinear systems may be used to determine 𝛽𝛽21. To be specific, the total 
energy of the simple nonlinear pendulum or simple spring-mass system with hardening 
(or softening) nonlinear spring can be computed exactly by using the initial conditions. In 
conservative nonlinear problems, the total energy at arbitrary time points should be the 
same as the initial total energy. Hence, it is possible to state the exact total energy at 
arbitrary time points in terms of the initial conditions. Then, the difference between the 
exact total energy and the numerically computed total energy can be manipulated to 
determine 𝛽𝛽21. In our case, the Taylor series of the difference of these two total energies 
can be expressed in the form of 
 

 (14) 
 
where 𝐸𝐸∆𝑡𝑡 is the numerically computed total energy by using the time scheme at 𝑡𝑡 = ∆𝑡𝑡, 
𝐸𝐸0 is exactly computed total energy with the initial conditions, and ℎ is the order of the 
convergence rate for the total energy of the nonlinear problem. It is noted that all existing 
composite scheme can give only second-order convergence rate (i.e., the case ℎ = 2) 
for the total energy of conservative nonlinear problems. To have one higher-order 
convergence rate (i.e., the case ℎ = 3), on the other hand, 𝛽𝛽21 can be determined as 
 

 
(15) 

 
The last undetermined parameter 𝜏𝜏2 is stated in terms of the ultimate spectral radius 
𝜌𝜌∞ as 
 

 
(16) 

 
where 𝜌𝜌∞ ∈ [0, 1].  In this study, we will investigate the case of 𝜌𝜌∞ = 1  and 0 . By 
determining 𝛽𝛽21 and 𝜏𝜏2 according to Eqs. (15)-(16), the effective coefficient matrices of 
the first and second sub-steps become identical to each other in linear analyses, and the 
scheme can give one higher-order total energy convergence for conservative nonlinear 
problems. It should be emphasized that these improvements are purely due to the 
optimized set of algorithmic parameters, which does not accompany additional 
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computational effort when compare with the existing composite schemes. It is noted that 
the two-stage scheme with the algorithmic parameters given in Eqs. (11)-(16) is 
unconditionally stable for linear problems.  
 

3.2 Enhance composite scheme with fourth-order energy conserving capability 
In nonlinear analyses, the effective coefficient system matrices of the first and 

second sub-steps cannot be constructed identically even if the condition given in Eq. (11) 
is used. Considering this particular aspect of nonlinear analyses, we may determine all 
algorithmic parameters to secure fourth-order total energy convergence rate (i.e., the 
case ℎ = 4). In this case, the algorithmic parameters are determined as 
 

   
(17) 

 

and 
 

  
(18) 

 
It is noted that the second case cannot adjust the level of numerical dissipation in the 
high-frequency range. It is also noted that the second case has been developed by using 
a different approach by Kim (2021). Interestingly, the algorithmic parameters presented 
in Eqs. (17)-(18) can be determined solely based on the total energy convergence 
condition of conservative simple nonlinear problems without considering the traditional 
accuracy and stability conditions derived from the linear single-degree-of-freedom 
problem.  
 

3.3 Major operations in linear analyses 
The numbers of major matrix and vector operations required in linear analyses are 

summarized in Table 1 by assuming that the existing schemes have identical effective 
coefficient matrices for the first and second sub-steps. As shown in Table 1, the existing 
composite schemes require two factorizations of system matrices (i.e., the effective 
coefficient and mass matrices) and the numbers of other operations are the same for all 
cases. It is noted that the second case (the scheme with fourth-order energy conserving 
capability) also requires two factorizations because two different effective coefficient 
matrices should be factorized. 
 

Operations Existing Proposed (1st) Proposed (2nd) 
𝐀𝐀−1 (inverse) 2 1 2 

𝐀𝐀𝐀𝐀 (matrix times vector) 6 6 6 
𝐀𝐀1 + 𝐀𝐀2 (matrix addition) 2 2 2 
𝐛𝐛1 + 𝐛𝐛2 (vector addition) 8 8 8 

Table 1 Comparison of major matrix and vector operations in composite schemes. 
 

 We also note that the discussion regarding the improved efficiency of the scheme 
is limited to only linear analyses. In nonlinear analyses, it is impossible to construct the 
effective coefficient matrices of the first and second sub-steps to be the same, and 
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several times of reconstructions and factorizations of effective coefficient matrices are 
also required in each time step. Hence, factorization of the mass matrix at 𝑡𝑡 = 0 is not 
a significant factor in nonlinear analyses.  
4. NUMERICAL VERIFICATIONS  
 

4.1 Damped and forced two degree of freedom problem 
     Simple linear problems are frequently used to test time schemes because 
numerical solutions can directly be compared with exact solutions. Here, we solve the 
two degree of freedom problem given by 
 

,   (19) 
 

where  
 

  
 

 

 
 
 

(20) 
 

 
Fig. 1 Errors with ∆𝑡𝑡 = 0.1. (a) Displacement. (b) Velocity. 
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Fig. 2 Errors with ∆𝑡𝑡 = 0.01. (a) Displacement. (b) Velocity. 

In our numerical test, we compare numerical solutions obtained from various two-stage 
implicit schemes with ∆𝑡𝑡 = 0.1  and 0.01 . It is noted that the numerical solutions 
obtained from the Newmark scheme (i.e., the trapezoidal rule) with a half time step are 
the same as those obtained from the non-dissipative cases of the existing composite 
schemes such as the collocation composite scheme (Kim 2017), the generalized 
composite time integration algorithm (Kim 2018), and the 𝜌𝜌∞-Bathe methods (Noh 2019). 
As shown in Figs. 1 and 2, errors of the newly proposed scheme is slightly smaller than 
those of the non-dissipative case of the existing composite scheme.  
 

4.2 Simple nonlinear pendulum 
 

 
Fig. 3. Description of the simple nonlinear pendulum problem (Kim 2017, 2019) 
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Fig. 4 Case of 𝜃̇𝜃0 = 1.999999238456499 (a) ∆𝑡𝑡 = 𝑇𝑇 10000⁄ . (b) ∆𝑡𝑡 = 𝑇𝑇 1000⁄  

 
Here, the simple nonlinear pendulum problem and a special set of initial conditions 

is used for the test of the time scheme. The governing equation is given by 
 

 (21) 
 

where 𝜔𝜔 = �𝑔𝑔 𝐿𝐿⁄ . It should be noted that two special sets of initial conditions were 
considered by Kim (2017). With the initial conditions proposed by Kim and Reddy, the 
simple pendulum problem given in Fig. 3 can be used as benchmark test problems. As 
given in Kim (2017, 2019), the case of 𝜃̇𝜃0 = 1.999999238456499  is also used to 
synthesize two highly nonlinear cases that give clear physical insights. The minimum 
total energy required for the pendulum to make a complete rotation about the pivot point 
is 𝐸𝐸0 = 1.0. With 𝜃̇𝜃0 = 1.999999238456499, the total energy of the first case becomes 
about 𝐸𝐸0 = 0.999998476913288 . With this particular set of initial conditions, the 
pendulum cannot make a complete rotation, but instead, the pendulum oscillates 
between two peak points with the period 𝑇𝑇 = 33.7210. 
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Fig. 5 (a) Case of 𝜃̇𝜃0 = 2.000000761543501 (a) ∆𝑡𝑡 = 𝑇𝑇 10000⁄  (b) ∆𝑡𝑡 = 𝑇𝑇 1000⁄  

 

 
Fig. 6 Convergence rate of total energies (a) Displacement (b) Velocity 

With 𝜃̇𝜃0 = 2.000000761543501 , the total energy of the second case becomes 
about 𝐸𝐸0 = 1.0000001523087292, and the pendulum passes the peak points slowly. For 
this case, the period becomes about 𝑇𝑇 = 16.8605. As shown in this particular problem, 
the proposed time schemes give more accurate predictions mainly due to the enhanced 
total energy conserving capability. Regarding the enhanced total energy conserving 
capability, Fig. 6 shows that the improved convergence rates of two cases are in a good 
agreement with the mathematical conditions used in the optimization of the algorithmic 
parameters. 
 

4.3 Excitation of an elastic bar 
     Here, the most dissipative case (i.e., 𝜌𝜌∞ = 0) of the first case (the scheme with 
third-order energy conserving capability) is tested by using the excitation of an elastic 
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bar problem. This particular problem has been used to test high-frequency filtering 
capabilities of various time schemes. The problem is described in Fig. 7. In the spatial 
discretization, one thousand uniform linear elements are used. 
 

 
Fig. 7. Description of the excitation of an elastic bar problem (Malakiyeh 2019) 

 

 
Fig. 8 High-frequency filtering capability of the first case for 𝜌𝜌∞ = 0 and 1. 
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Fig. 9 Comparison of solutions of the first case and the existing schemes for 𝜌𝜌∞ = 0. 

 
As shown in Fig. 8, the numerical dissipation in the most dissipative case can 

improve the quality of numerical solutions when compared with the non-dissipative case. 
The spurious oscillations around the wave front disappear in the most dissipative case if 
∆𝑡𝑡  is chosen as 9.86577 × 10−7s according to CFL=1.0. This case shows that the 
dissipation control capability and numerical dissipation of the proposed scheme can 
improve qualities of numerical solutions in some situations where the spurious high-
frequency mode should be eliminated. In addition, this process does not increase the 
computational effort at all. Fig. 9 shows that the most dissipative case of the proposed 
case can give equivalently improved numerical solutions for the impact and wave 
propagation problems when compared with the existing composite schemes. However, 
the level of numerical dissipation should be minimized for general cases where the high-
frequency filtering is unnecessary. In general analyses, such as analyses of conservative 
systems, the use of 𝜌𝜌∞ = 1 is recommended. 
 
5. CONCLUSION 
 

In this paper, the algorithmic parameters of the implicit schemes have been 
determined to minimize the total energy error of simple conservative nonlinear dynamic 
systems. As a result, improved dissipation properties were obtained in the implicit 
schemes. As aforementioned, the use of the optimized algorithmic parameters does not 
increase computational costs. Hence, the computational effort in each scheme is 
equivalent to that of the existing composite schemes. The newly proposed case 
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presented in this paper noticeably improved numerical performances when compared to 
the existing composite schemes as shown in the numerical examples.  
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